login:        password:      
Combats Scrolls
Rambler's Top100
Гость БК
... | Наська Open user info
Friend page
13.03.15 17:29   |  Emet Open user info Open user photogallery |     ru



Post comment
13.03.15 17:29   |  Emet Open user info Open user photogallery |     ru



Post comment
13.03.15 17:29   |  Emet Open user info Open user photogallery |     ru



Post comment
13.03.15 17:29   |  Emet Open user info Open user photogallery |     ru



Post comment
06.03.15 19:56   |  Emet Open user info Open user photogallery |   Теорема Гёделя  ru
 Теоре́ма Гёделя о неполноте́ и втора́я теоре́ма Гёделя[~ 1] — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой арифметики.

Эти теоремы были доказаны Куртом Гёделем в 1930 году (опубликованы в 1931) и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта.
Post comment
06.03.15 19:56   |  Emet Open user info Open user photogallery |   Теорема Гёделя  ru
 Теоре́ма Гёделя о неполноте́ и втора́я теоре́ма Гёделя[~ 1] — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой арифметики.

Эти теоремы были доказаны Куртом Гёделем в 1930 году (опубликованы в 1931) и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта.
Post comment
06.03.15 19:56   |  Emet Open user info Open user photogallery |   Теорема Гёделя  ru
 Теоре́ма Гёделя о неполноте́ и втора́я теоре́ма Гёделя[~ 1] — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой арифметики.

Эти теоремы были доказаны Куртом Гёделем в 1930 году (опубликованы в 1931) и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта.
Post comment
06.03.15 19:56   |  Emet Open user info Open user photogallery |   Теорема Гёделя  ru
 Теоре́ма Гёделя о неполноте́ и втора́я теоре́ма Гёделя[~ 1] — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой арифметики.

Эти теоремы были доказаны Куртом Гёделем в 1930 году (опубликованы в 1931) и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта.
Post comment
06.03.15 19:56   |  Emet Open user info Open user photogallery |   Теорема Гёделя  ru
 Теоре́ма Гёделя о неполноте́ и втора́я теоре́ма Гёделя[~ 1] — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой арифметики.

Эти теоремы были доказаны Куртом Гёделем в 1930 году (опубликованы в 1931) и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта.
Post comment
06.03.15 19:56   |  Emet Open user info Open user photogallery |   Теорема Гёделя  ru
 Теоре́ма Гёделя о неполноте́ и втора́я теоре́ма Гёделя[~ 1] — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой арифметики.

Эти теоремы были доказаны Куртом Гёделем в 1930 году (опубликованы в 1931) и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта.
Post comment

Total posts: 3468 Pages: 347
«« « 1 2 3 4 5 6 7 8 9 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90.. 100.. 110.. 120.. 130.. 140.. 150.. 160.. 170.. 180.. 190.. 200.. 210.. 220.. 230.. 240.. 250.. 260.. 270.. 280.. 290.. 300.. 310.. 320.. 330.. 340.. » »»
 
 


« 2025 may »
Mo Tu We Th Fr Sa Su
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

 
 © 2007–2025 «combats.com»
  18+  
feedback